Search results for "N fertilizer recovery"
showing 4 items of 4 documents
Morphological and Physiological Root Traits and Their Relationship with Nitrogen Uptake in Wheat Varieties Released from 1915 to 2013
2021
Identifying genotypes with a greater ability to absorb nitrogen (N) may be important to reducing N loss in the environment and improving the sustainability of agricultural systems. This study extends the knowledge of variability among wheat genotypes in terms of morphological or physiological root traits, N uptake under conditions of low soil N availability, and in the amount and rapidity of the use of N supplied with fertilizer. Nine genotypes of durum wheat were chosen for their different morpho-phenological characteristics and year of their release. The isotopic tracer 15N was used to measure the fertilizer N uptake efficiency. The results show that durum wheat breeding did not have univ…
Nitrogen Type and Availability Drive Mycorrhizal Effects on Wheat Performance, Nitrogen Uptake and Recovery, and Production Sustainability
2020
Plant performance is strongly dependent on nitrogen (N), and thus increasing N nutrition is of great relevance for the productivity of agroecosystems. The effects of arbuscular mycorrhizal (AM) fungi on plant N acquisition are debated because contradictory results have been reported. Using 15N-labeled fertilizers as a tracer, we evaluated the effects of AM fungi on N uptake and recovery from mineral or organic sources in durum wheat. Under sufficient N availability, AM fungi had no effects on plant biomass but increased N concentrations in plant tissue, plant N uptake, and total N recovered from the fertilizer. In N-deficient soil, AM fungi led to decreased aboveground biomass, which sugges…
"Role of Arbuscular Mycorrhizal Fungi in Nutrient Uptake and Growth of Durum Wheat"
Soil microbiome is involved at different levels in the food web, in bio-geochemical nutrient cycles and in several interactions with plants. Based on its key role in the agro-ecosystem processes, the soil microbiome has been identified as one of the principal factors in an agriculture addressed to the ecological intensification. Among the several relationships established between plants and soil microorganisms, arbuscular mycorrhizal (AM) symbiosis is the most widespread. Two out of three of all plant taxa (among others the main crops) are involved in the AM symbiosis which takes place between the plant root system and arbuscular mycorrhizal fungi (AMF), a monophyletic group of fungi belong…
Nitrogen uptake and nitrogen fertilizer recovery in old and modern wheat genotypes grown in the presence or absence of interspecific competition
2015
Choosing genotypes with a high capacity for taking up nitrogen (N) from the soil and the ability to efficiently compete with weeds for this nutrient is essential to increasing the sustainability of cropping systems that are less dependent on auxiliary inputs. This research aimed to verify whether differences exist in N uptake and N fertilizer recovery capacity among wheat genotypes and, if so, whether these differences are related to a different competitive ability against weeds of wheat genotypes. To this end, 12 genotypes, varying widely in morphological traits and year of release, were grown in the presence or absence of interspecific competition (using Avena sativa L. as a surrogate wee…